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COMMENT 

Phenomenological renormalisation of Monte Carlo data for 
percolation 
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90089-1211, USA 

Received 21 May 1985 

Abstract. The accuracy of a phenomenological renormalisation which is based on Monte 
Carlo data is tested by investigating site percolation in a simple cubic lattice. The method 
appears to be very accurate and can yield precise estimates of the quantities of interest 
with small to moderate lattice sizes. The site percolation threshold of the lattice is predicted 
to be 0.3 11 5 f 0.0005. If U is the exponent of correlation length, we find p /  U = 0.48 f 0.01 
for the exponent of percolation probability and pB/ U = 1.1 * 0.03 for the backbone exponent, 
in agreement with most accurate data currently available. An analysis of the data at the 
percolation threshold based on the standard finite-size scaling method also supports the 
results. 

Presently, none of the critical exponents for the percolation problem (Essam 1980, 
Stauffer 1985) are known exactly for two- or three-dimensional systems. However, in 
two dimensions the conjectures of den Nijs (1979), Nienhuis et al (1980) and Pearson 
(1980) are strongly supported by a variety of precise estimates of the exponents or by 
(not entirely rigorous) theoretical arguments, and are widely believed to be exact. 
These have been summarised and reviewed by Sahimi (1983). In three dimensions, 
the situation is less satisfactory and there is no general consensus concerning the values 
of the critical exponents obtained from series expansions, Monte Carlo (MC) simula- 
tions, renormalisation group ( RG) method or any other technique. Therefore there 
remains the need for an accurate method of estimating the quantities of interest. 

Phenomenological renormalisation ( PR) (Nightingale 1976, 1982) has proven to be 
a very powerful method of probing critical behaviour. In this approach, the correlation 
lengths &( p )  and &,( p )  of the system are computed for two different systems of linear 
dimensions L and L’ at the fraction p of active sites or bonds. The systems are usually 
L XOD strips. One infers a renormalisation transformation (RT) p + p ‘  by setting 

(1) 5L( PI/ L = t L ( P ’ ) /  L’. 

The fixed point p = p’  = p * (  L, L’) of the RT is an estimate of the percolation threshold 
pc ,  while the exponent v of the correlation length is estimated from 

(dp’ldp),,,, = ( L /  L’)””. (2) 

These estimates of p c  and v depend upon L and L‘, but in practice the convergence 
to the asymptotic (L+c?)  values is apparently very rapid as L and L’ are increased, 
if the ratio L/ L’ is kept as close to unity as possible; see Derrida and de Seze (1982), 
Privman and Fisher (1983), Herrmann and Stauffer (1984) and Luck (1935) for a 
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discussion of the rate of convergence. For percolation and lattice animal problems in 
two dimensions this method has been employed by Derrida and  co-workers with 
considerable success (Derrida and de  Seze 1982, Derrida and  Stauffer 1985, Derrida 
and  Vannimenus 1980, Nadal et a1 1982). By combining the PR method with MC 

calculations accurate estimates of the exponents of percolation conductivity have also 
been obtained (Derrida and  Vannimenus 1982, Derrida et a1 1983, Herrmann et a1 
1984, Zabolitzky 1984). A computer program which uses this method to calculate the 
conductivity of very large systems at any p has also been published (Derrida et a1 
1984). Kinzel and Yeomans (1981) employed the PR method for two-dimensional 
directed percolation. Many other statistical and  quantum mechanical systems in two 
dimensions have been studied with this method (see Nightingale (1982) for a review). 
In such systems the temperature T plays the role of p (see Blote et a1 1981). 

However, the application of the PR has been limited to two-dimensional systems 
and  the efficiency of the method is less obvious in three dimensions. One needs a 
sequence of several systems of moderate to large sizes for the extrapolation methods 
to work, but the sheer numerical size of the problem forbids one from calculating 
exact eigenvalues (i.e. the left side of (2)) which are needed for calculating the critical 
properties of large systems. The largest system that we are aware of is a L = 5 lattice 
(i.e. a 5 x5 x N lattice where N is large) that was used by Hamer (1983) to study a 
( 2 t  1 ) ~  Ising model. Since the PR is a consequence of finite-size scaling (for a review 
see Barber 1983), it is natural to look for another RT using some other quantities that 
satisfy finite-size scaling but are also more accessible than the correlation length, 
particularly from the point of view of M C  calculations. One also needs a method that 
can be used for three-dimensional systems. 

In this comment we test the accuracy of a method (Barber and Selke 1982, see also 
Binder 1981), phenomenological renormalisation of Monte Carlo data, by applying it 
to site percolation in three dimensions. This method is based on calculating a quantity 
P L ( p )  and consequently determining the quantity lL,L ( p )  defined by 

(3)  IL,L!( P) = In( PE/  PL,)/ In ( LI L').  

pL( p )  - L-"F( L O & )  

If P L ( p )  scales with L as 

(4) 

as in finite-size scaling theory, where E = ( p  - p c ) / p c ,  6 = U-', w = x / v ,  and x is the 
critical exponent of PL( p )  as L + CO, i.e. 

Pcc(p) - EX, ( 5 )  
then from (3), the intersection of 5 L , L , ( p )  and &L',L3(p) from three lattice sizes as a 
function of p is ( p c ,  U ) .  The exponent of correlation length v can still be estimated 
from (2). An alternative method, using data from four lattice sizes, is to let 

R L , L ' ( P )  = PL(P) /PL (PI. ( 6 )  

L,/ Lz = L3/ L, = b. (7) 

Barber and Selke (1982) employed this method to analyse the structure factor of the 
d = 2 axial next-nearest-neighbour Ising model. In this comment we calculate X;'( p ) ,  
the fraction of active sites in the infinite percolation cluster and X F ( p ) ,  the fraction 
of sites in the backbone of the infinite cluster, which is its current-carrying part in the 

Then RL,,b and RL,.L, should intersect at ( p c ,  b")  provided that 
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conduction problem, for lattices of various sizes L. Our goal is to obtain accurate 
estimates of P, the critical exponent of ZA and PB, the critical exponent of XB. Both 
P and PB have been estimated in the past by a variety of methods and their estimates 
vary widely (see below), especially in the case of PB. 

We first carried out some MC simulations with small lattices. To calculate XA and 
XB we made 4 x lo5 MC runs of site percolation on a simple cubic lattice with L = 4 
and L ' = 6  and 2 x105 runs with L"=9 at different values of p ranging from 0.26 to 
0.34. We then calculated l L , L '  and lLs,L" from which we obtained P /  U = 0.505, PBI U = 
0.66 and p ,  = 0.305. Given the very small sizes of the lattice the estimates of P /  U and 
p c  were very encouraging while that of P B / u  was low (see below); therefore we carried 
out MC simulations with larger lattices. (Periodic boundary conditions were used in 
this work.) 

We made 5 x lo4 MC runs of L '=  12 lattice and 8 x lo3 runs of L" = 24 lattice. The 
results (with L = 6 )  for XA( p )  and X"( p )  are presented in figures 1 and 2 respectively. 
In both figures p c  is found to be about 0.311. This is in very good agreement with 
p , ~ 0 . 3 1 1 7 ~ 0 . 0 0 0 3  (Heermann and Stauffer 1981, Gaunt and Sykes 1983) and with 
p c  = 0.3 116 * 0.0006 (Wilkinson and Barsony 1984). The consistency of the two figures 
in estimating p c  is remarkable. From figure 1 one finds p/u=0.485. (In all cases 
discussed here the third digit (in the case of an exponent) or the fourth digit (in the 
case of p , )  is included if the location of the arrow is between two consecutive values 
that can be read on the figure.) This compares well with the best estimates of P / u  
(see below). P B / u  is found to be about 0.88, a significant increase from the value 
obtained from smaller lattices; therefore, we did simulations with larger lattices. 
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Figure 1. Plot of the function lL,L, = Figure 2. The same as in figure 1 but for the fraction 
In(X:/X:.)/ln(L/L') against p .  XA is the fraction XB of active sites in the backbone of the infinite 
of active sites in the infinite cluster and arrows indi- cluster. 
cate the location of p c  and p /  U. 

We made 1.5 x lo4 MC runs of the L = 18 lattice and 5000 runs of the L = 36 one. 
The result for XA with L = 9 ,  L ' =  18 and L"=36 was p/u=0.48,  an insignificant 
change from the previous value obtained with smaller lattices. However, the same 
lattices yielded p B /  U = 1. Therefore, 1500 MC runs of the L = 48 lattice were made. 
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The results for XB with L =  12, L'= 24 and L"=48 are shown in figure 3. This figure 
shows that p,=0.3115 and PB/v':1.08. The results for XA were p,-0.3115 and 
p /  v = 0.48. The value of pB/ v is still larger than the one obtained from smaller lattices, 
but the rate of increase in its value has considerably decreased. 
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Figure 3. The same as in figure 2 but for larger 
lattices. 

Figure 4. Plot of the function R,.,. = X p / X p .  and 
X",Xy.  against p .  Arrows indicate the locations of 
pc  and b", where b = L/ L' and w = p,/ v and &/U. 

Barber and Selke (1982) stated that they found 5L.L' to be susceptible to fluctuations 
in the data whereas R L , c  was much less so. To test this we first took our data with 
L, = 6, L , =  12, L3 = 9  and L4= 18 and calculated RL,,h and R b , L 6 .  The results were 
P /  v = 0.48 and P B /  U = 0.9. pc  was found to be about 0.31 1. The results with L1 = 18, 
Lz=36,  L 3 = 2 4  and L4=48 are presented in figure 4, where one finds P/u=O.48, 
PB/ U = 1.05 and p c  = 0.3 115.  Therefore, it appears that PR treatment of MC data from 
four lattice sizes results in much more stable results. Hence, allowing for some increase 
in the value of p B /  v (by studying its rate of increase), we may list our best estimates 
as follows: 

p c  = 0.3 1 15 f 0.0005 (8) 

p,/  v = 0.48 * 0.01 (9) 

P B /  v 1 . 1  * 0.03. (10) 

The statistical errors of the individual points of figures 1-4 are very small (no more 
than 1 %  of the average values) because large numbers of MC runs were used. Since 
in the present method we use the logarithm of the ratio of the quantities of interest to 
construct the PR transformation, their effect is negligible. Therefore, to obtain estimates 
for the statistical errors for (8)-( lo) ,  we divided our MC data for each L into smaller 
groups of fewer MC runs and analysed them to obtain estimates of the quantities of 
interest. The variations of p c ,  P / v  and p B / v  among different groups yielded error 
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estimates quoted above. The estimated errors of pc and p / v  are quite reasonable as 
they agree with the values obtained from smaller lattices, which also indicate that with 
the present PR method the errors in pc and p / v  due to sample size are very small. 
However, in the case of pB/v the errors due to sample size might be quite large and 
we cannot rule out completely the possibility of larger values of pB/v with larger L. 
This strong L dependence of pB/ v may be related to thc structure of the backbone as 
discussed below. 

To test (10) we also used the standard finite-size scaling analysis of XB at p = pc. 
One thousand MC runs with various values of L at p = p c  were made. The results are 
presented in table 1. If we fit XB to an expression like 

XB = L-” ( a  + bL-R) (11) 

we obtain w = PB/ U = 1.1 * 0.05 and a= 1. This is in agreement with (10). 

Table 1. Values of the backbone fraction XB at the percolation threshold p,=O.3115 of 
the simple cubic lattice. L is the linear dimension of the lattice and numbers in parentheses 
indicate the statistical errors of XB in the last digit. 

L XB 

50 0.0084 (3) 
60 0.0069 (4) 
70 0.0056 (3) 
80 0.0049 ( 5 )  
90 0.0043 (3) 

At present, it is generally agreed that in three dimensions v = 0.88 (Heermann and 
Stauffer 1981, Gaunt and Sykes 1983). The exponent p has been estimated by many 
authors, a list of which is too long to be given here (see Gaunt and Sykes (1983) and 
references therein). The most accurate estimate of p /  v appears to be that of Margolina 
et a1 (1982) who obtained p/v-0.47*0.015. More recently, Adler (1984) found 
p /  U = 0.494 * 0.040. These authors took into account the effect of correction-to-scaling. 
Heermann and Stauffer (1981) and Gaunt and Sykes (1983) ignored correction-to- 
scaling effects and obtained p /  v =0.515. Even the smallest lattices used here yielded 
an estimate of p /  v(-0.505) which appears to exclude their estimate. Our estimate of 
p / u  fits nicely between those of Margolina et a1 (1982) and Adler (1984). It also 
predicts that the exponent 7 = 2p/  v - 1 which describes the critical behaviour of the 
pair correlation function at pc to be about -0.4. 

As mentioned above, p B /  v was found to be sensitive to the lattice size. We do not 
have a definite explanation of this. However, we note that Herrmann and Stanley 
(1984), in their study of the structure of the backbone, found that the backbone can 
be described as a randomly constructed ‘necklace’ (i.e. clusters of multiply connected 
bonds) whose building blocks are volatile fractals. This means that their structure is 
not stable under a change of length scale and changes identity. This may offer a 
plausible explanation for the sensitive dependence of pB/ v on L. 

The exponent pB has also been estimated by many authors (see Sahimi 1984, 
Sarychev et a1 1985 and references therein). Almost all of these estimates yield a value 
of PB/ v in the range 1.02-1.15. The only exception is that of Herrmann and Stanley 
(1984) who obtained p B / v =  1.26*0.04, which appears to us to be too large. The 
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scaling law (Sahimi 1984) 

/3B=$( ~d + 3p)  - 1 (12) 

yields PB/ v = 1.08, consistent with our estimate and with most of the previous estimates. 
In summary, we have tested the accuracy of the phenomenological renormalisation 

of Monte Carlo data method for percolation by estimating the site percolation threshold 
of the simple cubic lattice and  the exponents p and Ps.  The results agree with the 
most accurate available data. One reason for the accuracy of this method is perhaps 
the fact that one uses the ratio of the quantities of interest (and the logarithm of this 
ratio is one variant of the method). It is plausible that this causes some error cancella- 
tions. An interesting question is whether this method or any other PR method can be 
used to evaluate the scaling function of the cluster size distribution. 

This work was supported by the University of Southern California Faculty Research 
Innovation Fund. I would like to thank B Derrida and D S Stauffer for sending me 
copies of their work prior to publication. 

Note added in proof: Recently, Saleur and Derrida (1985) have combined the transfer matrix and Monte 
Carlo methods with the fourth-moment method of Binder (1981) to study site percolation and the Ising 
model in two and three dimensions. For site percolation in three dimensions, they have obtained p c =  
0.31 18 * 0.0004 amd p /  U = 0.05 i 0.06. 
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